I - Fonctions numériques :

□ Définition

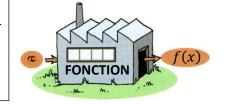
Soit D_f une partie de \mathbb{R} (intervalle ou réunion d'intervalles).

On définit une **fonction** f sur D_f en associant à tout réel x de D_f , un <u>unique réel</u> noté f(x)

- On dit que f(x) est l'image de x par la fonction f et que D_f est l'ensemble de définition de f.
- Lorsque y = f(x), on dit que le nombre x est un antécédent du nombre y par la fonction f.

Nombre x de départ x peut changer de valeur, peut

varier dans \mathcal{D}_f : x s'appelle la variable



Nouveau nombre d'arrivée

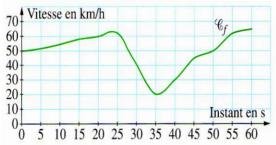
f(x) est **l'image** de x

Remarques:

- Un nombre de \mathcal{D}_f a une image unique.
- Mais une image peut être commune à plusieurs nombres de \mathcal{D}_f .
- Il y a plusieurs façons de définir une fonction. En voici différents exemples.

a) Avec un graphique

La courbe ci-dessous définit la fonction V qui, au temps en secondes variant dans $\mathcal{D}_V = [0; 60]$, définit la vitesse de Jules en km/h.



Evolution de la vitesse en fonction du temps :

- entre t = 0 et t = 24: la vitesse augmente
- entre t = 24 et t = 35: la vitesse baisse

20+			
10	Instant	en s	
0	5 10 15 20 25 30 35 40 45 50 55	60	
Qı	uelle était sa vitesse à $t=20$?	À quel moment roulait-il à $30 km/h$?	
II r	oulait à 60 km/h.	Anna	Au bout de $32 s$ et aussi $40 s$.

On note V(20) = 60

60 est l'image de 20 par V.

20 est un antécédent de 60 par V.

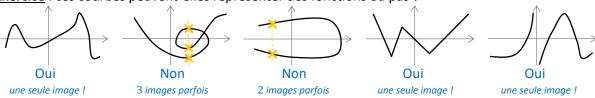
On note V(32) = V(40) = 30.

30 a donc deux antécédents par V.

Remarques:

Sur l'axe des abscisses, on lit les antécédents Sur l'axe des ordonnées, on lit les images

Exercice : ces courbes peuvent-elles représenter des fonctions ou pas ?



b) Avec un tableau de valeurs

Ce tableau définit la fonction P qui associe à la masse x d'une lettre le prix du timbre.

Masse en g	15	30	45	60	90	120	antécédents
Prix en €	0,54	0,86	0,86	1,30	1,30	2,11	images

Combien faut-il payer pour une lettre de 15 g?

Dans quelle situation doit-il payer 1,30 €?

Il faut payer 0,54 €.

Pour une lettre entre 60 g et 90 g.

On note P(60) = P(90) = 1,30.

On note P(15) = 0.54.

0,54 est l'image de 15 par P.

15 est un antécédent de 0,54 par P.

1,30 a donc une infinité d'antécédents par P.

- **Exercice**: Compléter le tableau de données et les phrases suivantes.
 - -8 est l'image de 4 par la fonction f.
 - Un antécédent de 4 par la fonction f est -3
 - -8 a pour antécédent 15 par la fonction f
 - f(-2) = f(7) = 2
 - 12 a pour image 17 par la fonction f.
 - L'image de 10 par la fonction f est 12.

x	-3	4	-2	12	7	15	10
f(x)	4	-8	2	17	2	-8	12

c) Avec une formule

Pour déterminer le montant des impôts total brut correspondant à la tranche de revenu annuel R (entre 13 000 et 27 000 €), on utilise la formule suivante :

$$B(R) = R \times 0, 11 - 1386, 55$$

Cette formule définit une fonction sur l'intervalle de départ $\mathcal{D}_B = [13\ 000\ ; 27\ 000].$

Combien d'impôt pour un revenu de 17 500 € ?	Dans quelle situation doit-on payer 815,10 €?
$B(17500) = 17500 \times 0,11 - 1386,55 = 538,45$ II faut payer $538,45 \in d'$ impôt. Notation : $B(17500) = 538,45$. → $538,45$ est l'image de 17500 par B .	$R \times 0,11 - 1386,55 = 815,10$ $R \times 0,11 = 2201,65$ $R = \frac{2201,65}{0,11} = 20015$ Le revenu correspondant à un montant d'impôts de 815,10 € et de 20 015. \Rightarrow 20 015 est l'antécédent de 815,10 par B .

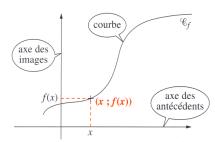
Exercice:

Le prix de l'essence sans plomb est de 1,8 \in le litre. Un client veut faire le plein de sa voiture. Il compte mettre x litres dans son réservoir vide qui peut contenir 40 Litres.

On considère la fonction f qui a chaque valeur de x associe le prix a payé par le client.

- 1. D'après le contexte de l'exercice, à quel intervalle x appartient-il ? En déduire l'ensemble de définition de la fonction f.
- 2. Déterminer l'expression algébrique de la fonction.
- 1. Le nombre de litres d'essence peux varier entre 5 et 40 donc $x \in [5; 40]$ ainsi Df=[5; 40]
- 2. La fonction f est définie par la formule f(x) = 1.8x

II - Courbes représentatives des fonctions :



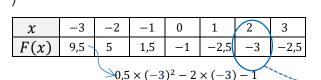
La courbe qui représente la fonction f est constituée de tous les points de coordonnées (x; f(x)).

 $\underline{\textbf{Exemple}}: \text{on veut tracer la courbe de la fonction définie par la } \textbf{formule}$

suivante : $f(x) = 0, 5x^2 - 2x - 1$

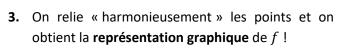
1. D'abord on construit un tableau de valeurs en choisissant les

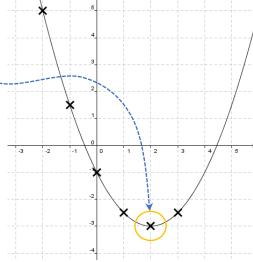
antécédents de son choix :



 Chaque colonne du tableau donne un couple (antécédent; image) qui sont les coordonnées d'un point de la courbe.

On place tous les points obtenus dans un repère bien gradué.





4. On peut maintenant lire d'autres images ou antécédents puisque la courbe est plus complète qu'un tableau, et demande moins d'efforts qu'une formule.

□ Définitions

Soit f une fonction définie sur un ensemble D.

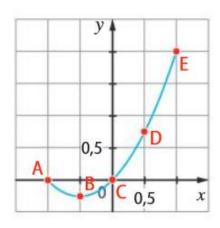
Dans le plan muni d'un repère, la courbe d'équation y = f(x) est l'ensemble des points du plan dont les coordonnées (x; y) vérifient la relation y = f(x) avec $x \in D$.

Exemple: Soit f la fonction définie sur D=[-1; 1] par $f(x) = x^2 + x$. Sa courbe représentative est l'ensemble des points de coordonnées (x; y) tels que x appartient à [-1; 1] et $y = x^2 + x$.

Un tableau de valeurs permet d'obtenir des coordonnées de points :

x	-1	-0,5	0	0,5	1
f(x)	0	-0,25	0	0,75	2

On place les points A(-1; 0), B(-0.5; -0.25), C(0; 0),... ainsi obtenus et on les relie par une courbe car il y a une infinité de points lorsque x décrit l'intervalle [-1;1]



☐ Appartenance d'un point à une courbe

Soit f une fonction définie sur un ensemble D et de courbe représentative \mathcal{C}_f dans un repère.

Un point M (x; y) appartient à C_f si, et seulement si, x appartient à D et y = f(x).

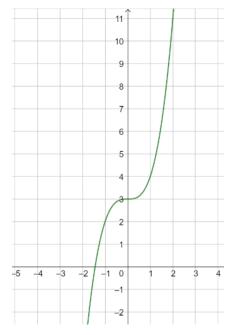
Exemples:

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 3$

a) Le point P (2; 11) et M (1; 6) sont-ils des points de la courbe C_f ?

(2 et 1 appartiennent bien à \mathbb{R})

On calcule $f(2)=2^3+3=11$, $y_P=11$ donc P appartient à C_f On calcule $f(1)=1^3+3=4$, or $y_M=4\neq 6$ donc M n'appartient pas à C_f .



b) M est le point d'abscisse 1,5 de cette courbe. Calculer son ordonnée.

Les coordonnées de M sont (1,5; f(1,5)).

$$f(1,5) = 1,5^3 + 3 = 6,375$$

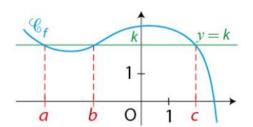
Donc l'ordonnée de M est 6,375.

III - Résolutions graphiques :

Soit C_f et C_g les courbes respectives des fonctions f, g dans un repère.

\square Résoudre f(x) = k

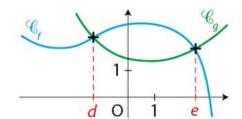
Les solutions sont les **abscisses** des points d'intersection de la droite d'équation y=k et de la courbe $C_{\rm f}$.



L'équation f(x) = k a pour solutions a, b, c et peut se noter $S = \{a, b, c\}$

\square Résoudre f(x) = g(x)

Les solutions sont les **abscisses** des points d'intersection des courbes C_f et $\ C_g$



L'équation f(x) = g(x) a pour solutions d et e et peut se noter $S = \{d, e\}$

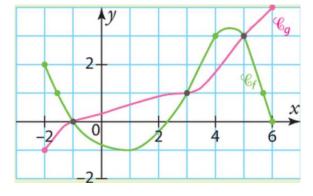
Exemple:

On considère deux fonctions f et g définies sur [-2;6] dont voici ci-contre les courbes représentatives.

a) A l'aide de la courbe représentative de f, résoudre f(x)=3.

b) A l'aide des courbes représentatives de f et g , résoudre

f(x) = g(x).

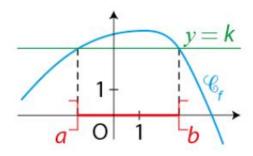


a) On trace la droite d'équation y=3 puis on lit les abscisses des points d'intersection de la courbe avec cette droite. Les solutions sont 4 et 5 et peut se noter $S=\{4,5\}$.

b) On lit les abscisses des points d'intersection des deux courbes. Les solutions sont -1 ; 3 et 5 et peut se noter $S = \{-1; 3; 5\}$.

\square Résoudre f(x) > k

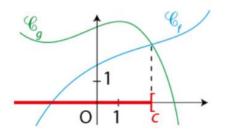
Les solutions sont les **abscisses** des points de la courbe $C_{\rm f}$ situés au-dessus de la droite d'équation y=k .



L'ensemble solutions de l'inéquation f(x) > k est l'intervalle a : b

\square Résoudre f(x) < g(x)

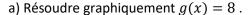
Les solutions sont les **abscisses** des points de la courbe C_f situés en-dessous de la courbe C_g .



L'ensemble solutions de l'inéquation f(x) < g(x) est l'intervalle $]-\infty$; c[

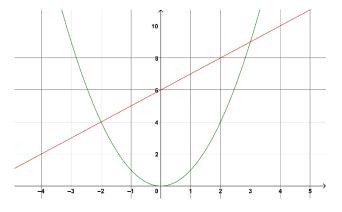
Exemple:

On considère les courbes représentatives de la fonction carré, notée f, et de la fonction affine g définie sur $\mathbb R$ par g(x)=x+6. Elles sont tracées dans le repère ci-contre.



b) Résoudre graphiquement $f(x) \ge g(x)$.

a) On trace la droite d'équation y=8 puis on lit l'abscisse du point d'intersection de la courbe avec cette droite. La solution est 2 et peut se noter $S=\{2\}$.



b) On lit les abscisses des points de la courbe C_f situés au-dessus de la courbe C_g . L'ensemble solutions de l'inéquation $f(x) \ge g(x)$ est l'intervalle $]-\infty;-2] \cup [3;+\infty[$.