I - La fonction exponentielle :

a) Existence et unicité de la fonction exponentielle :

Définition:

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1.

Cette fonction s'appelle fonction exponentielle et se note exp.

Ainsi la fonction exponentielle est définie et dérivable sur \mathbb{R} avec $\exp(0) = 1$ et $(\exp x)' = \exp x$

Démonstration:

On admet l'existence d'une telle fonction f. On va démontrer son unicité.

On va montrer que, pour tout $x \in \mathbb{R}$, $f(x) \times f(-x) = 1$ et $f(x) \neq 0$.

Soit $h(x) = f(x) \times (-x)$ pour $x \in \mathbb{R}$.

Alors hest dérivable sur \mathbb{R} et $h'(x) = f'(x) \times f(-x) + f(x) \times (-1) \times f'(-x) = f(x) \times f(-x) - f(x) \times f(-x) = 0$ h est donc une fonction constante sur \mathbb{R} . Or $h(0)=f(0)\times f(-0)=1\times 1=1$ donc h(x)=1 pour tout $x\in\mathbb{R}$. Autrement dit $f(x) \times f(-x) = 1.$

On en déduit que pour tout $x \in \mathbb{R}$, $f(x) \neq 0$.

2) Soit g une fonction qui vérifie les mêmes propriétés que f: g' = g et g(0) = 1.

On définit une fonction k par $k(x) = \frac{g(x)}{f(x)}$, ce qui est possible pour $x \in \mathbb{R}$ d'après le point précédent.

Alors $k'(x) = \frac{g'(x)f(x) - g(x)f'(x)}{(f(x))^2} = \frac{g(x)f(x) - g(x)f(x)}{(f(x))^2} = 0$ donc k est constante sur \mathbb{R} . Or $k(0) = \frac{g(0)}{f(0)} = \frac{1}{1} = 1$ donc pour tout réel x, k(x) = 1.

On en déduit que pour tout réel x, g(x) = f(x): la fonction f est donc unique.

b) Propriétés algébriques de la fonction exponentielle :

Propriété: exponentielle d'une somme

Pour tous réels a et b, $exp(a + b) = exp(a) \times exp(b)$

Démonstration:

Soit $b \in \mathbb{R}$. On définit une fonction f sur \mathbb{R} par $f(x) = \frac{1}{\exp(b)} \times \exp(x+b)$

Alors f est dérivable sur \mathbb{R} et $f'(x) = \frac{1}{\exp(b)} \times 1 \times \exp(x+b) = \frac{1}{\exp(b)} \times \exp(x+b) = f(x)$

De plus, $f(0) = \frac{1}{\exp(0)} \times \exp(0+b) = \frac{\exp(b)}{\exp(b)} = 1$

On déduit des points précédents que f est la fonction exponentielle, et donc que, pour tout réel x:

 $\frac{1}{\exp(b)} \times \exp(x+b) = \exp(x), \text{ soit } \exp(x+b) = \exp(x) \times \exp(b).$

Propriétés : exponentielle, opposé, différence et puissance

On déduit de la propriété précédente que :

- Pour $a \in \mathbb{R}$ tout réel x, $\exp(-x) = \frac{1}{exp(x)}$
- $\exp\left(a-b\right) = \frac{exp(a)}{exp(b)}$ Pour tous nombres réels a et b,
- Pour tout réel a et tout nombre entier relatif n, $(exp(a))^n = exp(na)$

c) Nouvelle notation et nombre e :

Définition:

Le nombre e est l'image de 1 par la fonction exponenetielle. On a donc exp(1)=e.

Notation : Les propriétés algébriques précédentes sont analogues aux règles de calculs des puissances, on introduit donc une nouvelle notation : $exp(x) = e^x$ lire « exponentielle ou e exposant exp(x) »

ainsi on écrit :
$$e^0=1$$
 et $e^1=e$

Remarque: on a avec la calculatrice
$$e^{2}$$
 2.718281828 $e \approx 2,72$

Propriétés : nouvelle écriture et propriétés algébriques.

On déduit de la propriété précédente que :

- Pour tous nombres réels x et y, $e^{x+y} = e^x \times e^y$
- Pour tout réel x, $e^{-x} = \frac{1}{e^x}$
- Pour tous nombres réels x et y, $e^{x-y} = \frac{e^x}{e^y}$
- $e^{0.5} = \sqrt{e}$
- Pour tout réel x et tout nombre entier relatif n, $(e^x)^n = e^{nx} = (e^n)^x$ En particulier : $(e^x)^2 = e^{2x}$

***** Exercice :

a) Simplifier les expressions suivantes en l'écrivant avec une seule exponentielle :

$$A = \frac{e \times e^2}{e^4} = B = \frac{1}{(e^{-3})^2} + \frac{(e^4)^{-1}}{e^2 \times e^{-6}} =$$

b) x désigne un nombre réel, écrire chaque expression avec une seule exponentielle.

$$C = e^{3x} \times e^{5-x} =$$

$$D = \frac{e^{2x-3}}{e^{x-1}} =$$

II - Applications de la fonction exponentielle :

a) Courbe représentative de la fonction exponentielle :

Propriété:

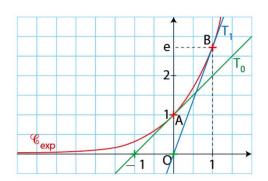
La fonction exponentielle est strictement croissante sur \mathbb{R} ,

* Démonstration :

La fonction exponentielle est strictement positive sur \mathbb{R} , soit pour tout nombre réel x, $e^x > 0$, comme cette fonction est égale à sa dérivée, on en déduit que la fonction exponentielle est strictement croissante sur \mathbb{R} car $(e^x)' = e^x$ et $e^x > 0$.

■ Voici le tableau de variation de la fonction exponentielle :

x	$-\infty$	0	1	$+\infty$
exp'(x))	+	-	
exp (x)		—1—	e	—



Tangente To au point d'abscisse 0 :

On note f la fonction exponentielle, $f(0)=e^0=1$ et $f'(0)=e^0=1$. Une équation de T est : y=f'(0)(x-0)+f(0) , soit y=x+1.

Tangente T_1 au point d'abscisse 1 :

On note f la fonction exponentielle, $f(1)=e^1=e$ et f'(1)=1. Une équation de T est : y=f'(1)(x-1)+f(1) , soit y=e(x-1)+e=ex.

La courbe représentative de la fonction exponentielle est toujours au-dessus de l'axe des abscisses.

Exercice:

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+1)e^x$.

- a) Calculer la dérivée de la fonction f.
- b) Dresser le tableau de variations de la fonction f.
- c) Déterminer une équation de la tangente à la courbe au point d'abscisse 0.
- d) Tracer la courbe représentative de la fonction f en s'aidant de la calculatrice.

b) Exponentielle d'une fonction affine :

Propriété:

a et b désignent deux nombres réels

Si f est une fonction définie sur \mathbb{R} par $f(x) = e^{ax+b}$, alors f est dérivable sur \mathbb{R} et $f'(x) = ae^{ax+b}$.

Démonstration:

On rappelle que la dérivée d'une fonction composée $x \mapsto f(ax+b)$ est $x \mapsto af'(ax+b)$. En considérant $f(x) = e^x$, on a : $(e^{ax+b})' = ae^{ax+b}$.

Exemples

- La fonction $h: x \mapsto e^{2x+5}$ est dérivable sur \mathbb{R} et pour tout nombre réel x, h'(x) =
- La fonction $f: x \mapsto e^{-x}$ est dérivable sur \mathbb{R} et pour tout nombre réel x, f'(x) =
- La fonction $j: x \mapsto e^{-0.5x-2}$ est dérivable sur \mathbb{R} et pour tout nombre réel x, j'(x) =

c) Fonctions de la forme $t \mapsto e^{kt}$:

Propriété:

La fonction $t \mapsto e^{kt}$, avec $k \in \mathbb{R}$ *, est dérivable sur \mathbb{R} . Sa dérivée est la fonction $t \mapsto ke^{kt}$.

Exemple:

Soit
$$f(t) = e^{-4t}$$
 alors $f'(t) = -4e^{-4t}$.

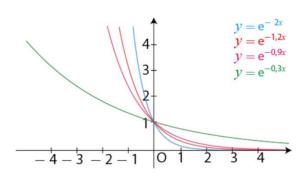
k est un nombre réel strictement positif donné.

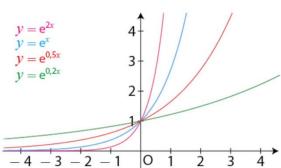
• La fonction $f_k \colon t \mapsto \mathrm{e}^{-kt}$ est définie et dérivable sur \mathbb{R} . Pour tout nombre réel t, $f_k'(t) = -k\mathrm{e}^{-kt}$, donc $f_k'(t) < 0$. La fonction f_k est donc strictement décroissante sur \mathbb{R} .

t	$-\infty$	0	$+\infty$
$f_k'(t)$		-	
$\mathbf{f_k}(\mathbf{t})$		1	\

• La fonction g_k : $t \mapsto \mathrm{e}^{kt}$ est définie et dérivable sur \mathbb{R} . Pour tout nombre réel t, $g_k'(t) = k\mathrm{e}^{kt}$, donc $g_k'(t) > 0$. La fonction g_k est donc strictement croissante sur \mathbb{R} .

t	$-\infty$	0	+∞
$g_k'(t)$		+	
$g_k(t)$		1	





Exercice d'application

Suite à une infection, le nombre de bactéries contenues dans un organisme en fonction du temps (en heures) peut être modélisé par la fonction f définie sur [0;10] et telle que f'(t)=0.14f(t).

- 1) Montrer que la fonction f définie sur [0 ; 10] par $f(t)=Ae^{0.14t}$ convient.
- 2) On suppose que f(0) = 50000. Déterminer A.
- 3) Déterminer les variations de f sur [0 ; 10].
- 4) a) À l'aide de la calculatrice, donner un arrondi au millier près du nombre de bactéries après 3h puis 5h30.
- b) À l'aide de la calculatrice, déterminer au bout de combien de temps le nombre de bactéries a-t-il doublé. Arrondir à l'heure près.

d) Exponentielle et suites géométriques :

Propriété:

Pour tout réel a, la suite de terme général e^{na} est géométrique.

<u>Démonstration</u>:

 $\forall n \in \mathbb{N}$, on pose $u_n = e^{na}$.

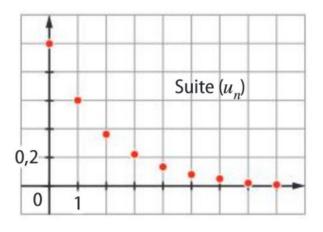
On a alors $u_{n+1} = e^{(n+1)a} = e^{na+a} = e^{na}e^a = e^a \times u_n$ pour tout n.

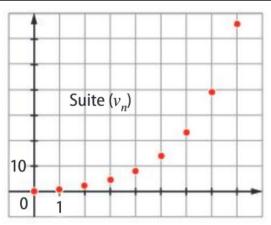
La suite (u_n) est donc géométrique de raison e^a et de premier terme $e^0=1$.

Exemples

La suite (u_n) définie par $u_n=e^{-0.5n}$ est géométrique de raison $e^{-0.5}$. On dit que la décroissance de la suite (u_n) est exponentielle.

La suite (v_n) définie par $v_n=e^{0.5n}$ est géométrique de raison $e^{0.5}$. On dit que la croissance de la suite (v_n) est exponentielle.





Exercice d'application :

1) Dans chaque cas, déterminer la raison et le premier terme de la suite géométrique dont le terme général est :

a)
$$u_n = e^{4n}$$
 b) $u_n = 2e^{-3n}$ c) $u_n = -e^{\frac{n}{3}}$ d) $u_n = e^{2n-1}$

2) Déterminer le terme général d'une suite géométrique de raison $\frac{1}{e}$ et de premier terme 3.

- 3) (u_n) est la suite définie pour tout nombre n de $\mathbb N$ définie par $u_n=e^{5n}$.
- a) Démontrer que la suite (u_n) est géométrique. Préciser sa raison et son premier terme u_0 .
- b) Calculer la valeur exacte de la somme $S=u_0+u_1+u_3$.