### Mathématiques 1<sup>ère</sup> EDS

## Devoir en Temps Libre n°1

# A faire pour la semaine du 18/09/2023

Le travail doit être rédigé sur une copie, Il est important pour vous d'atteindre le meilleur niveau possible.

#### Exercice 1:

a) Dans chacun des cas, écrire le trinôme sous la forme  $ax^2 + bx + c$  et préciser les valeurs de a, b et c:

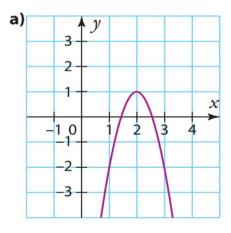
| $1-2x^2+3x$                           | $5 + 2x^2$     | $\sqrt{3}x^2 - 5 + 2x$    |
|---------------------------------------|----------------|---------------------------|
| $\frac{3}{5}x - 2(x^2 + \frac{3}{2})$ | $-3(2x-x^2-1)$ | $(7x + 2)^2 - (1 - 5x)^2$ |

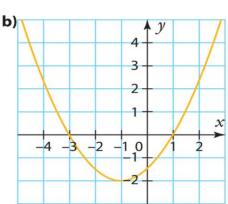
b) Vérifier que le nombre r est une racine des trinômes suivants :

| by vermer que le mombre y est une rueme des emiornes sur | Talles !                                                  |
|----------------------------------------------------------|-----------------------------------------------------------|
| $2x^2 + 3x - 5  \text{avec}  r = 1$                      | $x^2 - \frac{7}{6}x + \frac{1}{3}$ avec $r = \frac{2}{3}$ |
| $7x^2 - 4x - 11$ avec $r = -1$                           | $-x^2 + x + 2 - \sqrt{2}$ avec $r = 1 - \sqrt{2}$         |

Exercice 2 : compléter les identités suivantes afin de faire apparaître une identité remarquable :

| $x^2 - 14x + \dots = (x - \dots)^2$     | $9x^2 + \dots + 1 = (\dots x + \dots)^2$          |
|-----------------------------------------|---------------------------------------------------|
| $x^2 - \dots x + 9 = (x - \dots)^2$     | $2x^2 - 4x + 2 = \dots (x - \dots)^2$             |
| $x^2 + 10x + \dots = (x + \dots)^2 + 3$ | $50x^2 + 60x + 19 = \dots (5x + \dots)^2 + \dots$ |


#### Exercice 3:


1) Dans chaque cas, écrire le trinôme sous sa forme canonique :

| $ A = x^2 + 6x + 1$ $ B = -2x^2 + 10x$ $ C = 3x^2 - 9x - 15$ |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

- 2) Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = 2x^2 12x + 22$ .
- a. Déterminer la forme canonique de la fonction f.
- b. En déduire le minimum de f et la valeur de x pour laquelle il est atteint.

<u>Exercice 4:</u> Pour chaque fonction représentée ci-dessous, déterminer les coordonnées du sommet, l'axe de symétrie et le signe de a.





#### Exercice 5:

Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = -3x^2 + 9x - 5$ .

- 1. f admet-elle un maximum ou un minimum sur  $\mathbb R$  ?
- 2. Dresser le tableau de variations de f.