On considère une expérience aléatoire d'univers fini Ω et une probabilité P définie sur Ω . A, B et C sont trois évènements de Ω . On suppose que $P(A) \neq 0$

Probabilité conditionnelle

♦ La probabilité de « B sachant A »

(sous-entendu que A est réalisé) est :

$$P_{\mathbf{A}}(\mathbf{B}) = \frac{P(\mathbf{A} \cap \mathbf{B})}{P(\mathbf{A})}$$

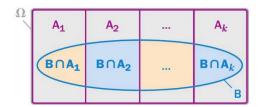
$$P_{A}(B) = \frac{probabilit\'{e} \ de \ l'intersection}{probabilit\'{e} \ de \ la \ condition}$$

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(\bar{A}) = 1 P(A)$
- $P(A \cap B) = P_A(B) \times P(A)$

Partition et formule des probabilités totales

Les événements $A_1,A_2,...,A_k$ réalisent une partition de l'univers Ω si et seulement si :

- $A_1 \neq \emptyset, A_2 \neq \emptyset; ... A_k \neq \emptyset$
- $\begin{tabular}{l} \blacksquare & {\rm Si}\ i\ {\rm et}\ j\ {\rm sont}\ {\rm dans}\ \{1,\dots,n\}\ {\rm avec}\ i\ \neq j, A_1\cap A_2=\emptyset \\ A_1\cup A_2\cup\dots\cup A_k=\varOmega \\ \end{tabular}$



♦ Formule des probabilité totales :

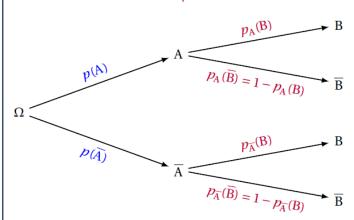
$$P(B) = p(B \cap A_1) + p(B \cap A_2) + \dots + p(B \cap A_k)$$

Cas particulier de la partition $\{A, \bar{A}\}$

$$P(B) = p(B \cap A) + p(B \cap \overline{A})$$

Arbre pondéré

probabilités conditionnelles



♦ Règle de la somme :

La somme des probabilités inscrites sur les branches partant d'un même nœud est égale à 1.

probabilités composées

probabilités totales

$$p_{A}(\overline{B}) = 1 - p_{A}(B)$$

$$B \qquad p(A \cap B) = p(A) \times p_{A}(B)$$

$$p(B) = p(A \cap B) + p(\overline{A} \cap B)$$

$$p(\overline{A} \cap B) = p(A) \times p_{A}(\overline{B})$$

$$p(\overline{A} \cap B) = p(\overline{A}) \times p_{\overline{A}}(B)$$

$$p(\overline{B}) = p(A \cap \overline{B}) + p(\overline{A} \cap \overline{B})$$

$$p(\overline{B}) = p(A \cap \overline{B}) + p(\overline{A} \cap \overline{B})$$

$$p(\overline{B}) = p(A \cap \overline{B}) + p(\overline{A} \cap \overline{B})$$

♦ Règle du produit :

La probabilité d'un chemin, constitué d'une succession de branches, est égale au produit des probabilités inscrites sur ses branches.

Evènements Indépendants ; incompatibles.

- → Evénements indépendants (La réalisation de A n'influence pas sur la réalisation de B)
 - A et B indépendants $\Leftrightarrow P(A \cap B) = P(A) \times P(B)$
 - A et B indépendants $\iff P_A(B) = P(B)$ ou $P_B(A) = P(A)$.
- → Evénements incompatibles (Les événements ne peuvent pas se produire simultanément, ils ne contiennent pas d'issues communes)
- A et B incompatibles $\Leftrightarrow P(A \cup B) = P(A) + P(B)$
- A et B incompatibles \iff $A \cap B = \emptyset$

Tableau à double entrées.

	A	$\overline{\mathbf{A}}$	Total
В	$P(A \cap B)$	$P(\overline{A} \cap B)$	P(B)
$\overline{\mathrm{B}}$	$P(A \cap \overline{B})$	$P(\overline{A} \cap \overline{B})$	$P(\overline{B})$
Total	P(A)	$P(\overline{A})$	1