I - Signe d'une fonction du second degré :

On a vu que le polynôme du second degré $ax^2 + bx + c$ peut (éventuellement) se factoriser sous forme d'un produit de facteurs du premier degré, ce qui va nous permettre de déterminer son signe.

□ Théorème :

Un polynôme du second degré ax^2+bx+c ($a\neq 0$) est du signe de a, sauf entre les racines quand elles existent.

❖ <u>Démonstration</u> :

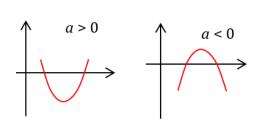
Soit f une fonction du second degré, définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \neq 0$.

On sait que le nombre de racines de cette fonction (le nombre de zéros dans le tableau de signes) dépend du signe de $\Delta = b^2 - 4ac$.

ightharpoonup 1er cas : $\Delta > 0$

on sait que le polynôme possède deux racines x_1 et x_2 et que sa factorisation est $f(x) = a(x - x_1)(x - x_2)$. Le signe de f peut alors être déterminé grâce à la règle des signes !

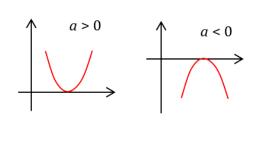
x	-∞	<i>x</i> ₁		<i>x</i> ₂	+∞
а	Signe de <i>a</i>		Signe de <i>a</i>		Signe de <i>a</i>
$x-x_1$	_	φ	+		+
$x-x_2$	_		_	ф	+
f(x)	Signe de a	Φ	- Signe de a	φ	Signe de a



ightharpoonup 2ème cas : $\Delta = 0$

on sait que le polynôme possède une unique racine x_0 et que sa factorisation est $f(x) = a(x - x_0)^2$ Le signe de f peut alors être déterminé grâce à la règle des signes !

х	-∞	x_0	+∞
а	Signe de a		Signe de $\it a$
$x-x_0$	_) +
$x-x_0$	_) +
f(x)	Signe de a	C) Signe de a



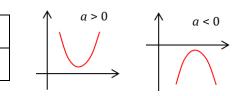
▶ $3^{\text{ème}}$ cas : $\Delta < 0$

Le polynôme n'a pas de racine, on ne peut pas le factoriser. La parabole ne coupe jamais l'axe des abscisses, donc elle est toujours de même signe.

Si a > 0, la parabole est ouverte vers le haut. Comme l'axe des abscisses ne la coupe pas, c'est qu'il est en dessous, donc la fonction est toujours positive comme a.

Si a < 0, la parabole est ouverte vers le bas. Comme l'axe des abscisses ne la coupe pas, c'est qu'il est au-dessus, donc la fonction est toujours négative comme a.

Ī	x	-∞	+∞
F	f(x)	Signe de <i>a</i>	



***** Exercice d'application : Etudier le signe d'une fonction polynôme du second degré

Etudier le signe de la fonction f définie sur \mathbb{R} par $f(x) = 2x^2 - x - 6 = 0$

Calculons le discriminant $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49$.

Comme $\Delta > 0$, donc la fonction polynôme f a deux racines distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{49}}{2 \times 2} = -\frac{3}{2}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{49}}{2 \times 2} = 2$$

La fonction polynôme a le signe de a sauf entre ses racines, ici a=2>0 d'où le tableau de signe de f(x):

x	-∞	-1,5	-1,5		2	
f(x)	+	0	-	0	+	

***** Exercice d'application : Résoudre une inéquation du second degré

Résoudre l'inéquation : $x^2 + 3x - 5 < -x + 2$

On commence par rassembler tous les termes dans le membre de gauche afin de pouvoir étudier les signes des trinômes.

$$x^2 + 3x - 5 < -x + 2 \iff x^2 + 4x - 7 < 0.$$

Le discriminant de $x^2 + 4x - 7$ est $\Delta = 4^2 - 4 \times 1 \times (-7) = 44$ et ses racines sont :

$$x_1 = \frac{-4 - \sqrt{44}}{2 \times 1} = -2 - \sqrt{11}$$
 et $x_2 = \frac{-4 + \sqrt{44}}{2 \times 1} = -2 + \sqrt{11}$

On obtient le tableau de signes :

x	-∞		$-2 - \sqrt{11}$		$-2 + \sqrt{11}$	+∞
f(x)		+	φ	-	ø	+

L'ensemble des solutions de l'inéquation $x^2+3x-5<-x+2$ est donc $\left]-2-\sqrt{11}\right.$; $-2+\sqrt{11}\left[-2+\sqrt{11}\right]$

II - Application : position relative de deux courbes :

☐ <u>Définition et méthode</u> :

Étudier la **position relative** de deux courbes, c'est déterminer laquelle est graphiquement située au-dessus de l'autre. Cela peut varier suivant les intervalles.

Méthode:

Soient f et g deux fonctions définies sur \mathbb{R} . Pour étudier la position relative de C_f et C_g :

- on calcule la différence f(x) g(x);
- on étudie son signe dans un tableau;
- on conclut : sur les intervalles où la différence est positive, c'est C_f qui est au-dessus, et inversement

Exercice:

Soient f et g deux fonctions définies sur $\mathbb R$ par : $f(x) = -x^2 + 8x - 11$ et g(x) = x - 1. Étudier la position relative des courbes représentatives $\mathcal C_f$ et $\mathcal C_g$.

Etudions le signe de la différence f(x) - g(x):

$$f(x) - g(x) = -x^2 + 8x - 11 - x + 1 = -x^2 + 7x - 10.$$

Le discriminant du trinôme $-x^2 + 7x - 10$ est $\Delta = 72 - 4x(-1)x(-10) = 9$

Le trinôme possède deux racines distinctes :

$$x_1 = \frac{-7 - \sqrt{9}}{2 \times (-1)} = 5 \text{ et } x_2 = \frac{-7 + \sqrt{9}}{2 \times (-1)} = 2$$

On en déduit le tableau de signes suivant :

Х	-∞	2		5	+∞	
f(x) - g(x)	_	0	+	0	_	

On en conclut que:

La courbe C_f est en-dessous de la courbe C_g pour tout x de $]-\infty$; 2] \cup [5; $+\infty$ [.

La courbe C_f est au-dessus de la courbe C_g pour tout x de [2;5].

Vérification à la calculatrice :

Sur la calculatrice, tracer les deux courbes \mathcal{C}_f et \mathcal{C}_g . Paramétrer la fenêtre du graphique A l'aide des outils trace ou calculs, déterminer les points d'intersections de \mathcal{C}_f et \mathcal{C}_g . Conclure

