Correction de l'activité de découverte 1 page 67 :

1)a) La liste des diviseurs de 284 est : 1 , 2 , 4, 71, 142 , 284

b) La liste des diviseurs de 220 est : 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220

c) On remarque que la somme des diviseurs de 284, autres que 284, est 220 et que la somme des diviseurs de 220, autre que 220, est 284.

Correction du 18 et du 19 p 72

18 a) 144 = 24 × 6 donc 24 est un diviseur de 144.

b)
$$\frac{84}{7}$$
 = 12 donc 84 est divisible par 7 et par 12.

c) $295 = 59 \times 5$ donc 295 est un multiple de 59 et 5.

19 a)
$$-132 = 11 \times (-12)$$

b)
$$-270 = -15 \times 18$$

c)
$$32058 = 3562 \times 9$$

d)
$$406 = 14 \times 29$$

Correction du 22 p 72

Le ticket de Jade doit être divisible à la fois par $15 = 5 \times 3$ donc par 5 et par 3 et aussi par 19.

On exclu 5095 et 5035 dont la somme des chiffres n'est pas un multiple de 3.

 $4245 \div 19 \approx 223,42$ donc 4245 n'est pas divisible par 19

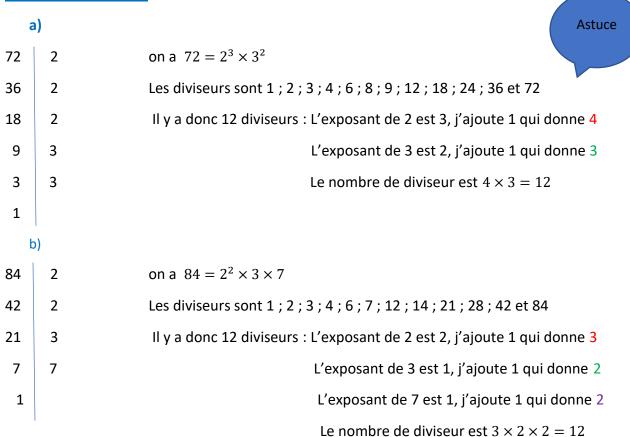
 $4845 = 15 \times 323 = 19 \times 255$ donc le ticket de Jade porte le numéro 4845.

Correction du 23 p 72

- a) 2 et 9 sont premiers entre eux , le plus petit entier naturel divisible par 2 et 9 est donc $18 = 2 \times 9$ on fait le produit de chaque facteur premier avec le plus grand exposant.
- b) 4 et 8 sont tous les deux divisibles par 4, donc c'est 8 le plus petit entier qui est divisible par 4 et par 8. Ici il ne faut pas faire $4 \times 8 = 32$ on a $4 = 2^2$ et $8 = 2^3$ (on fait le produit de chaque facteur premier avec le plus grand exposant.)
- c) 6 et 9 sont tous les deux divisibles par 3, on a $6 = 3 \times 2$ et $9 = 3^2$ donc c'est $2 \times 3^2 = 18$ le plus petit entier qui est divisible par 6 et par 9. (on fait le produit de chaque facteur premier avec le plus grand exposant.)

d) 12 et 16 sont tous les deux divisibles par 4, on a $12 = 3 \times 2^2$ et $16 = 2^4$ donc c'est $3 \times 2^4 = 48$ le plus petit entier qui est divisible par 6 et par 9. (on fait le produit de chaque facteur premier avec le plus grand exposant.)

Correction du 26 p 72



c) 12 est le plus grand diviseur commun à 72 et 84.

Correction du 31 p 73

- a) Un multiple quelconque de 5 se note $5 \times k = 5k$
- b) Le suivant d'un multiple de 5 se note $5 \times k + 1 = 5k + 1$
- c) Un multiple pair de 5 se note $5 \times (2 \times k) = 5(2k) = 10k$
- d) $5 \times k 1 = 5k 1$ désigne le précédent d'un multiple de 5

Correction du 33 ;35 ;36 p 73

et k' a désignent deux multiples de a (avec k et k' nombres de \mathbb{Z}).

a) ka - k'a = (k - k')a = Ka avec K = k - k'.

Or, $k - k' \in \mathbb{Z}$ donc la différence de deux multiples de a est un multiple de a.

b) $ka \times k'a = (kk'a)a = Ka$ avec K = kk'a.

Or, $kk'a \in \mathbb{Z}$ donc le produit de deux multiples de a est un multiple de a.

35 a) n-1 désigne le précédent de n, et n+1 le suivant de n.

b) n-1+n+n+1=3n; cette somme est un multiple de 3.

La somme de trois nombres entiers consécutifs est un multiple de 3.

36 a) n-2+n-1+n+n+1+n+2=5n.

b) Cette somme est un multiple de 5.

 c) La somme de cinq nombres entiers consécutifs est un multiple de 5.

Correction du 29 ;30 et 32 p 73

29 (1), **(2)** et **(4)** désignent des nombres pairs. En effet, 4n = 2(2n) et 2n - 2 = 2(n - 1). Par contre **(3)** désigne un nombre impair car 2n + 3 = 2(n + 1) + 1.

30 (1), (2) et (3) désignent des nombres impairs. En effet, 4n+3=2(2n+1)+1. Par contre (4) désigne un nombre pair car 2n+4=2(n+2).

La démonstration de l'exercice 32 s'appelle **une démonstration par contre-exemple.** (Si on trouve un exemple qui contredit l'affirmation, alors cela signifie que cette affirmation est fausse.)

32 2, 3, 4 sont trois nombres consécutifs mais 2+3+4=9 et 9 n'est pas un nombre pair. L'affirmation de Sam est fausse.

Correction du 37 et 40 p 73

37 a) 2k et 2k' désignent deux nombres pairs (avec k et k' nombres de \mathbb{Z}).

b)
$$2k \times 2k' = 2(2kk') = 2K$$
 avec $K = 2kk'$.

Or, $2kk' \in \mathbb{Z}$ donc le produit est un nombre pair.

 c) Le produit de deux nombres pairs est un nombre pair. 40 a) 2k + 3 est le nombre impair qui suit 2k + 1.

b)
$$2k+1+2k+3=4k+4=4(k+1)$$

Donc cette somme est un multiple de 4.

c) La somme de deux nombres impairs consécutifs est un multiple de 4.

Correction du 94 p 80

94 1^{er} cas: n pair

Il existe un nombre k de \mathbb{N} tel que n = 2k.

Alors, $A = 3(2k)^2 + 2(2k) + 1 = 12k^2 + 4k + 1$

c'est-à-dire $A = 2(6k^2 + 2k) + 1$

soit A = 2K + 1 avec $K = 6k^2 + 2k$. Or, $K \in \mathbb{N}$ donc

A est un nombre impair.

2e cas: n impair

Il existe un nombre k de \mathbb{N} tel que n = 2k + 1.

Alors A = $3(2k+1)^2 + 2(2k+1) + 1$

Or, $(2k+1)^2 = (2k+1)(2k+1)$

soit $(2k+1)^2 = 4k^2 + 2k + 2k + 1$

 $(2k+1)^2 = 4k^2 + 4k + 1.$

Donc, $A = 3(4k^2 + 4k + 1) + 2(2k + 1) + 1$

 $A = 12k^2 + 12k + 3 + 4k + 2 + 1$

 $A = 12k^2 + 16k + 6$

 $A = 2(6k^2 + 8k + 3)$

 $A = 2K' \text{ avec } K' = 6k^2 + 8k + 3$

Or $K' \in \mathbb{N}$, donc A est un nombre pair.

Conclusion : A est pair lorsque *n* est impair et A est impair lorsque *n* est pair.

Correction du 41 à 45 et 47 p 73

41 a) 39 est divisible par 3 donc il n'est pas premier.

b) 72 est divisible par 2 et différent de 2 donc il n'est pas premier.

c) 145 est divisible par 5 donc il n'est pas premier.

d) 153 est divisible par 9 donc il n'est pas premier.

42 Claire a raison.

En effet, 2+3=5 et 2, 3, 5 sont des nombres premiers.

43 Luka se trompe. En effet, 5+7=12 et 5, 7 sont impairs mais 12 n'est pas premier.

44 (3) est l'affirmation exacte.

En effet, 13 et 17 sont des nombres premiers et 13 + 17 = 30.

(1) est fausse car 2 est un nombre premier.

(2) est fausse car 21 n'est pas premier.

45 a) 13 est un nombre premier.

b) 24 est divisible par 2 et différent de 2 donc il n'est pas premier.

c) 29 est un nombre premier.

d) 92 est divisible par 2 et différent de 2 donc il n'est pas premier.

e) 53 est un nombre premier.

47 a) $2 \times 9 \times 5 + 3 = 3(2 \times 3 \times 5 + 1)$,

donc ce nombre est divisible par 3 et il n'est pas premier.

b) $36 \times 5 \times 7 + 27 = 9(4 \times 5 \times 7 + 3),$

donc ce nombre est divisible par 9 et il n'est pas premier.

Correction du 135 p 83

135 Le résultat du programme est $p^2 - 4$ pour un nombre premier $p \neq 2$ choisi en entrée.

p est un nombre premier différent de 2 donc p est un nombre impair. Il existe donc $k \in \mathbb{N}$ tel que p = 2k + 1.

$$p^{2} - 1 = (2k + 1)^{2} - 1 = 4k^{2} + 4k + 1 - 1$$
$$= 4(k^{2} + k) = 4K$$

avec $K = k^2 + k$

 $K \in \mathbb{N}$ donc 4 divise $p^2 - 1$. Par conséquent $p^2 - 1$ est un multiple de 4.

Correction du 50 p 74

Firstilla se trompe. En effet, -1+1+3=3 et 3 est un nombre premier.

Par contre, dans tous les autres cas, elle a raison.

En effet : si l'on choisi 3 nombres impairs consécutifs alors :

$$(2k + 1) + (2k + 3) + (2k + 5) = 6k + 9 = 3(2k + 3)$$

Or le nombre 3(2k+3) est un multiple de 3 donc n'est pas premier sauf si $2k+3=1 \Leftrightarrow 2k=-2$

$$\Leftrightarrow k = -1$$

Car alors 3 est un nombre premier.

Correction du 52 à 55 p 74

52
$$1024 = 2^6 \times 2^4 = 2^{10}$$
 Donc Lilian a tort.

En effet 64 n'est pas un nombre premier et $64 = 2^4$

53
$$132 = 4 \times 3 \times 11 = 2^2 \times 3 \times 11$$
.

54 a)
$$15 = 3 \times 5$$

b)
$$8 = 2^3$$

c)
$$18 = 2 \times 9 = 2 \times 3^2$$

d)
$$36 = 4 \times 9 = 2^2 \times 3^2$$

55 L'affirmation (2) est fausse.

En effet, $1455 = 3 \times 5 \times 97$.

Correction du 56 et 57 p 74

56
$$224 = 2^3 \times 2^2 \times 7 = 2^5 \times 7$$

57 a)
$$54 = 2 \times 3^3$$
 b) $82 = 2 \times 41$ c) $72 = 2^3 \times 3^2$

d)
$$120 = 2^3 \times 3 \times 5$$
 e) $48 = 2^4 \times 3$

Correction du 111 p 81

111 1.
$$220 = 2^2 \times 5 \times 11$$

$$90 = 2 \times 3^2 \times 5$$

- **2. a)** $2^3 \times 5 \times 11$ est un multiple de 220 mais pas de 90.
- **b)** $2 \times 3^3 \times 5 \times 11$ est un multiple de 90 mais pas de 220.
- c) 2² ×11 n'est ni un multiple de 220 ni un multiple de 90.
- **d)** $2 \times 3 \times 5 \times 11 \times 13$ n'est ni un multiple de 220 ni un multiple de 90.
- e) $2^2 \times 3^3 \times 5^2 \times 11^2$ est un multiple de 220 mais pas de 90
- **3.** Le plus petit commun multiple à 220 et 90 est $2^2 \times 3^3 \times 5 \times 11$ c'est-à-dire 1 980.

pour obtenir le plus petit commun multiple de deux

nombres, on doit faire le produit de tous les facteurs premiers des deux nombres affectés de leur plus grand exposant.

Correction du 112 p 81

112 a)
$$18 = 2 \times 3^2$$
 et $24 = 2^3 \times 3$.

b) Le plus petit multiple commun à 18 et 24 est $2^3 \times 3^2$ c'est-à-dire 72.

 $72 = 4 \times 18$ et $72 = 3 \times 24$, donc après 4 tours de la roue A et 3 tours de la roue B, elles se retrouveront pour la première fois dans la même position.

Correction du 76 p 75

76 a)
$$\frac{224}{280} = \frac{2^5 \times 7}{2^3 \times 5 \times 7} = \frac{2^2}{5} = \frac{4}{5}$$

b)
$$\frac{420}{882} = \frac{2^2 \times 3 \times 5 \times 7}{2 \times 3^2 \times 7^2} = \frac{2 \times 5}{3 \times 7} = \frac{10}{21}$$

c)
$$\frac{8800}{3775} = \frac{2^5 \times 5^2 \times 11}{5^2 \times 151} = \frac{2^5 \times 11}{151} = \frac{352}{151}$$

d)
$$\frac{1056}{1596} = \frac{2^5 \times 3 \times 11}{2^2 \times 3 \times 7 \times 19} = \frac{2^3 \times 11}{7 \times 19} = \frac{88}{133}$$

Correction du 123 p 82

$$\frac{123}{21} = \frac{5}{7}$$

Une fraction égale à $\frac{15}{21}$ est de la forme $\frac{5k}{7k}$ avec $k \in \mathbb{Z}^*$.

La somme des numérateur et dénominateur est 5k + 7k = 12k.

$$12k = 132$$
 lorsque $k = \frac{132}{12} = 11$.

La fraction égale à $\frac{15}{21}$ et dont la somme des numérateur et dénominateur est 132 est donc $\frac{55}{77}$.