Exercice 1:

Un complexe cinématographique a ouvert ses portes en 2018 en périphérie d'une ville. En 2018, le complexe a accueilli 180 mille spectateurs. La gestionnaire du complexe prévoit une augmentation de 4 % par an de la fréquentation du complexe.

Soit n un entier naturel. On note u_n le nombre de spectateurs, en milliers, du complexe cinématographique pour l'année (2018+n). On a donc $u_0=180$

- 1) Étude de la suite (u_n)
 - a) Calculer le nombre de spectateurs en 2019.
 - b) Justifier que la suite (u_n) est géométrique. Préciser sa raison.
 - c) Exprimer un en fonction de n, pour tout entier naturel n.
- 2) Un cinéma était déjà installé au centre-ville. En 2018, il a accueilli 260 000 spectateurs. Avec l'ouverture du com-

plexe, le cinéma du centre-ville prévoit de perdre 10 000 spectateurs par an. Pour n, entier naturel, on note v_n le nombre de spectateurs, en milliers, accueillis dans le cinéma du centre-ville l'année (2018+n).

- On a donc $v_0 = 260$.
- a) Quelle est la nature de la suite (v_n) ?
- b) On donne le programme ci-dessous, écrit en Python.

 Quelle est la valeur renvoyée lors de l'exécution de la fonction cinema()
 ? L'interpréter dans le contexte de l'exercice.

```
def cinema():
    n=0
    u=180
    v=260
    while u<v:
        n=n+1
        u=u*1.04
        v=v-10
    return n</pre>
```

Exercice 2:

- 1. Dans chaque cas, déterminer pour quelles(s) valeurs de n, u_n prend la valeur 5.
 - a) (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = -2n + 21$
 - b) (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{n+26}{n+2}$

Exercice 3: Position relative d'une parabole et d'une droite

On veut étudier la position relative d'une parabole d'équation $y = 2x^2 - 3x + 5$ et d'une droite d'équation y = 5x - 3.

- 1. Déterminer le ou les points d'intersection de la parabole et de la droite.
- 2. On pose $f(x) = 2x^2 3x + 5$ et g(x) = 5x 3.
 - a) Etudier le signe de f(x) g(x).
 - b) En déduire la position relative de la parabole et de la droite.

Exercice 4:

On peut montrer que deux suites sont égales, en montrant qu'elles ont le même premier terme et qu'elles suivent la même relation de récurrence.

On considère la suite (u_n) définie sur \mathbb{N} par $u_n = 2^n - 1$.

On considère la suite (v_n) définie par $v_0=0$ et, pour tout $\in \mathbb{N}$, $v_{n+1}=2v_n+1$.

On veut montrer que les deux suites (u_n) et (v_n) sont égales.

- 1. Calculer les trois premiers termes de chaque suite.
- **2.** Montrer que, pour tout entier n, on a $u_{n+1} = 2u_n + 1$.
- 3. Conclure.

Exercice 5:

On considère l'équation $(m + 8)x^2 + mx + 1 = 0$.

Pour quelles valeurs de *m* cette équations admet-elle une unique solution ?