Exercice 1:

Un complexe cinématographique a ouvert ses portes en 2018 en périphérie d'une ville. En 2018, le complexe a accueilli 180 mille spectateurs. La gestionnaire du complexe prévoit une augmentation de 4 % par an de la fréquentation du complexe.

Soit n un entier naturel. On note u_n le nombre de spectateurs, en milliers, du complexe cinématographique pour l'année (2018+n). On a donc $u_0=180$

- 1) Étude de la suite (u_n)
 - a) Calculer le nombre de spectateurs en 2019.

Augmenter de 4 %, revient à multiplier par 1+4%=1+0.04=1.04. On a donc $u_1=u_0\times 1.04=180\times 1.04=187.2$. Le nombre de spectateurs en 2019 devrait être égal à 187 200.

b) Justifier que la suite (u_n) est géométrique. Préciser sa raison.

Le nombre de spectateurs est celui de l'année d'avant multiplié par 1,04. On a donc : pour tout naturel n, u_{n+1} = $u_n \times 1,04$, ce qui montre que la suite (u_n) est géométrique de premier terme 180 et de raison 1,04.

c) Exprimer un en fonction de n, pour tout entier naturel n.

On a donc, pour tout n \in N. $u_n = u_0 \times 1,04n = 180 \times 1,04n$,

2) Un cinéma était déjà installé au centre-ville. En 2018, il a accueilli 260 000 spectateurs. Avec l'ouverture du com-

def cinema():

u = 180

v=260 while u<v:

return n

n=n+1

u=u*1.04 v=v-10

n=0

plexe, le cinéma du centre-ville prévoit de perdre 10 000 spectateurs par an. Pour n, entier naturel, on note v_n le nombre de spectateurs, en milliers, accueillis dans le cinéma du centre-ville l'année (2018+n).

On a donc $v_0 = 260$.

a) Quelle est la nature de la suite (v_n) ?

On a donc pour tout naturel n, $v_{n+1} = v_n - 10$, ce qui montre que la suite (v_n) est une suite arithmétique de premier terme $v_0 = 260$ et de raison r = -10.

b) On donne le programme ci-dessous, écrit en Python.
Quelle est la valeur renvoyée lors de l'exécution de la fonction cinema() ? L'interpréter dans le contexte de l'exercice.

La fonction cinema() renvoie n = 5.

n	0	1	2	3	4	5
u_n	180	187,2	194,7	202,5	210,6	219
v_n	260	250	240	230	220	210

Ceci montre que la 5e année, soit en 2023, le nombre de spectateurs du nouveau complexe sera supérieur à celui de l'ancien cinéma.

Exercice 2:

- 1. Dans chaque cas, déterminer pour quelles(s) valeurs de n, u_n prend la valeur 5.
 - a) (u_n) définie pour tout $n\in\mathbb{N}$ par $u_n=-2n+21$
 - b) (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{n+26}{n+2}$

a)
$$u_n = 5 \iff -2n + 21 = 5 \iff n = \frac{5-21}{-2} = 8$$

b)
$$u_n = 5 \iff \frac{n+26}{n+2} = 5 \iff 5(n+2) = n+26 \iff 5n+10 = n+26 \iff 4n = 16 \iff n = 4$$

Exercice 3: Position relative d'une parabole et d'une droite

On veut étudier la position relative d'une parabole d'équation $y = 2x^2 - 3x + 5$ et d'une droite d'équation y = 5x - 3.

1. Déterminer le ou les points d'intersection de la parabole et de la droite.

Les abscisses des points d'intersections correspondent aux solutions de l'équation $2x^2 - 3x + 5 = 5x - 3$.

$$2x^2 - 3x + 5 = 5x - 3$$
 \Leftrightarrow $2x^2 - 8x + 8 = 0$

 $\Delta = (-8)^2 - 4 \times 2 \times 8 = 0$. l'équation possède une racine unique :

$$x_0 = \frac{-(-8)}{2 \times 2} = \frac{8}{4} = 2$$
 $y = 5 \times 2 - 3 = 7$

Le point d'intersection de la droite et de la parabole a pour coordonnées (2; 7).

- 2. On pose $f(x) = 2x^2 3x + 5$ et g(x) = 5x 3.
 - a) Etudier le signe de f(x) g(x).

Etudions le signe de la différence f(x) - g(x):

$$f(x) - g(x) = 2x^2 - 3x + 5 - (5x - 3) = 2x^2 - 8x + 8.$$

D'après la question précédente, ce polynôme a pour unique racine 2 et comme a=2>0 Le signe de la différence est donc positif ou nulle pour tout réel x .

b) En déduire la position relative de la parabole et de la droite.

La courbe C_f est au-dessus de la courbe C_q pour tout x réel, sauf en x=2, où les deux courbes se coupent.

Exercice 4:

On peut montrer que deux suites sont égales, en montrant qu'elles ont le même premier terme et qu'elles suivent la même relation de récurrence.

On considère la suite (u_n) définie sur \mathbb{N} par par $u_n = 2^n - 1$.

On considère la suite (v_n) définie par $v_0=0$ et, pour tout $\in \mathbb{N}$, $v_{n+1}=2v_n+1$.

On veut montrer que les deux suites (u_n) et (v_n) sont égales.

1. Calculer les trois premiers termes de chaque suite.

$$u_0 = 2^0 - 1 = 1 - 1 = 0$$
 $v_0 = 0$ $v_1 = 2^1 - 1 = 2 - 1 = 1$ $v_2 = 2^2 - 1 = 4 - 1 = 3$ $v_2 = 2v_1 + 1 = 2 \times 0 + 1 = 1$

2. Montrer que, pour tout entier n, on a $u_{n+1} = 2u_n + 1$.

Pour tout $n \in \mathbb{N}$,

$$u_{n+1} = 2^{n+1} - 1$$
 et $2u_n + 1 = 2 \times (2^n - 1) + 1 = 2 \times 2^n - 2 + 1 = 2^{n+1} - 1$

Donc
$$u_{n+1} = 2u_n + 1$$

Autre méthode un peu moins instinctive

Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = 2^{n+1} - 1 = 2 \times 2^n - 1 - 1 + 1 = 2 \times 2^n - 2 + 1 = 2 \times (2^n - 1) + 1$
Donc $u_{n+1} = 2u_n + 1$

3. Conclure.

Les suites (u_n) et (v_n) ont le même premier terme $u_0=v_0=0$ et la même relation de récurrence, elles sont donc égales.

Exercice 5:

On considère l'équation $(m + 8)x^2 + mx + 1 = 0$.

Pour quelles valeurs de m cette équation admet-elle une unique solution ?

Calculons le déterminant
$$\Delta = m^2 - 4 \times (m+8) \times 1 = m^2 - 4m - 32$$

L'équation admet une unique solution si et seulement si $\Delta = 0$

On doit donc résoudre $m^2 - 4m - 32 = 0$

Calculons le déterminant $\Delta' = (-4)^2 - 4 \times 1 \times (-32) = 144 > 0$, l'équation possède deux solutions distinctes :

$$m_1 = \frac{-4-12}{2} = -8$$
 et $m_2 = \frac{-4+12}{2} = 4$

Si
$$m=-8$$
 , l'équation obtenue est $(-8+8)x^2+-8x+1=0 \Leftrightarrow -8x+1=0$

Si
$$m=4$$
, l'équation obtenue est $(-8+4)x^2+4x+1=0 \Leftrightarrow 4x^2+4x+1=0$